Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing
نویسندگان
چکیده
Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.
منابع مشابه
Sensing combustion intermediates by femtosecond filament excitation.
Simultaneous monitoring of multiple combustion intermediates using femtosecond filament-induced nonlinear spectroscopy is demonstrated. Clean fluorescence emissions from free radicals CH, CN, NH, OH, and C(2), as well as atomic C and H, are observed when a femtosecond filament is formed in the laminar ethanol/air flame on an alcohol burner. The fluorescence signals of these species are found to...
متن کاملLaser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 2) excitation.
Laser-induced fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. The commonly applied D-X(0, 1) or A-X(0, 0) schemes are restricted to atmospheric-pressure flames and engines driven with gaseous fuels because of strong attenuation of the exciting laser beam by combustion intermediates. The properties of a detection scheme for which...
متن کاملStudies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement
The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...
متن کاملModeling of the Combustion Oscillations and Soot Formation in Aerovalved Pulse Combustors
This paper describes the modifications and evolution of a thermal pulse combustionmodel for predicting the combustion oscillations of an aerovalved 250 kW pulse combustorincorporating a soot formation-combustion model. Validation of the model is carried out from theexperimental data of an aerovalved Helmholtz type pulse combustor, where a sinusoidal air inlet massflow coupled with pressure osci...
متن کاملTowards concurrent identification of flame dynamics and combustion noise of enclosed flames
The purpose of this work is to highlight the importance of taking into account the two-way interaction between flame and acoustics in the prediction of combustion noise generated by enclosed turbulent flames. It is argued that in general the power spectral density (PSD) of noise inside a combustion chamber can be determined accurately only if the influence of acoustics on the flame is considere...
متن کامل